Using a novel suite of experiments in the CESM CAM5 atmospheric general circulation model coupled to a slab ocean, we systematically test and analyze mechanisms behind the relative climate impact of identical black carbon and sulfate aerosol emissions located in each of 8 past, present, or projected future major emissions regions.
Results indicate that historically high emissions regions, such as North America and Western Europe, produce a stronger cooling effect than current and projected future high emissions regions. Aerosol emissions located in Western Europe produce 3 times the global mean cooling (-0.34 °C) as those located in East Africa or India (-0.11 °C). The aerosols’ in-situ radiative effects remain relatively confined near the emissions region, but large distal cooling results from remote feedback processes – particularly, surface albedo changes – that are excited more strongly by emissions from certain regions than others. Results suggest that aerosol emissions from different countries should not be considered equal in the context of climate mitigation accounting, and that the evolving geographic distribution of aerosol emissions may have a substantial impact on the magnitude and spatial distribution of global climate change.