18th Conference on Weather and Forecasting, 14th Conference on Numerical Weather Prediction, and Ninth Conference on Mesoscale Processes

Wednesday, 1 August 2001
Assimilation of Cloud- and Land-Affected TOVS/ATOVS Level 1B Radiances in DAO's Next Generation Finite-volume Data Assimilation System
Joanna Joiner, NASA/GSFC, Greenbelt, MD; and A. M. da Silva
The Physical-space/Finite-volume Data Assimilation System (fvDAS) is the next generation global atmospheric data assimilation system in development at the Data Assimilation Office (DAO) at NASA's Goddard Space Flight Center. It is based on a new finite-volume general circulation model jointly developed by NASA and NCAR, and on the Physical-Space Statistical Analysis System (PSAS) developed at the DAO. In this talk we will focus on the assimilation of data from the (Advanced) TIROS Operational Vertical Sounder (ATOVS), with emphasis on the impact of cloud- and land-affected level 1B radiances.

Recently, it has been shown that the use of observations from satellite-borne microwave and infrared radiometers in data assimilation systems consistently increases forecast skill. Considerable effort has been expended over the past two decades, particularly with the (Advanced) TIROS Operational Vertical Sounder (ATOVS), to achieve this result. The positive impact on forecast skill has resulted from improvements in quality control algorithms, systematic error correction schemes, and more sophisticated data assimilation algorithms. Despite these advances, there are still many issues regarding the use of satellite data in data assimilation systems that remain unresolved. In particular, most operational centers still do not assimilate cloud- and land-affected TOVS data. In this study, we evaluate the impact of assimilating cloud- and land-affected TOVS/ATOVS level 1B data in DAO's next generation fvDAS, using a 1D variational scheme. We will discuss the impact of these data on both tropospheric and stratospheric forecasts, as well as on the general aspects of the earth climate system.

Supplementary URL: