531 Quantitative Decomposition of Radiative and Non-€‘Radiative Contributions to Temperature Anomalies Related to Siberian High Variability

Tuesday, 24 January 2017
Tae-Won Park, Chonnam National University, Gwangju, Korea, Republic of (South); and J. H. Jeong, Y. Deng, and M. Cai

Handout (2.6 MB)

In this study, we carried out an attribution analysis that quantitatively assessed relative contributions to the observed temperature anomalies associated with strong and weak Siberian High (SH). Relative contributions of radiative and non-radiative processes to the variation of surface temperature, in terms of both amplitude and spatial pattern, were analyzed. The strong SH activity leads to the continental-scale cold temperature anomalies covering eastern Siberia, Mongolia, East China, and Korea (i.e., SH domain). The decomposition of the observed temperature anomalies associated with the SH variation was achieved with the Coupled atmosphere–surface climate Feedback-Responses Analysis Method, in which the energy balance in the atmosphere–surface column and linearization of radiative energy perturbation are formulated. For the mean amplitude of −3.13 K of cold temperature anomaly over the SH domain, sensible heat flux is tightly connected with a cooling of −1.26 K. Atmospheric dynamics adds another −1.13 K through the large-scale cold advection originated from the high latitudes. The longwave effects of cloud and water vapor account for the remaining cold anomalies of −1.00 and −0.60 K, respectively, while surface dynamics (0.71 K) and latent heat flux (0.26 K) help to mitigate the cold temperature anomalies. Influences of ozone and albedo processes are found to be relatively weak.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner