1008 United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms, and Model Representation

Wednesday, 10 January 2018
Exhibit Hall 3 (ACC) (Austin, Texas)
Robert X. Black, Georgia Institute of Technology, Atlanta, GA

We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner