With a good representation of the historical precipitation and snowpack over the Sierra Nevada from the historical reference run at 9km (using WRF), the results from the offline Noah-MP simulations with perturbed near-surface temperatures reveal magnificent impacts of warming to the loss of the average snowpack. The reduction of the SWE under warming mainly results from the decreased rain-to-snow conversion with a weaker effect from increased snowmelt. Compared to the natural case, the past industrial warming decreased the maximum SWE by about one-fifth averaged over the study area. Future continuing warming can result in around one-third reduction of current maximum SWE under RCP4.5 emissions scenario, and the loss can reach to two-thirds under RCP8.5 as a "business-as-usual" condition. The impact of past warming is particularly outstanding over the North SN region where precipitation dominates and over the middle elevation regions where the snow mainly distributes. In the future, the warming impact on SWE progresses to higher regions, and so to the south and east. Under the business-as-usual scenario, the projected mid-elevation snowpack almost disappears by April 1st with even high-elevation snow reduced by about half.
Along with the loss of the snowpack, as the temperature warms, floods can also intensify with increased early season runoff especially under heavy-rainy days caused by the weakened rain-to-snow processes and strengthened snow-melt mainly over the mid-elevation region. Under continuing warming and predicted intensified precipitation extremes in the coming century, the severity of floods can become much more disastrous and potentially shift from the north (where the Oroville Dam spillway emergency occurred this February) to the central and south SN regions.