| | P1.1 | ABI system overview Paul Griffith, ITT Space Systems Division, Fort Wayne, IN |
| | P1.2 | ABI scan scenario capabilities David Crain, ITT Space Systems Division, Fort Wayne, IN; and P. Griffith |
| | P1.3 | Candidate approaches for the real-time generation of cloud properties from GOES-R ABI Andrew K. Heidinger, NOAA/NESDIS, Madison, WI |
| | P1.4 | GOES-R architecture framework John W. Linn III, Noblis, Falls Church, VA; and L. Shipley |
| | P1.5 | Development of the GOES-R AWG product processing system framework Walter Wolf, NOAA/NESDIS/STAR, Camp Springs, MD; and L. Zhou, P. Keehn, Q. Guo, S. Sampson, S. Qiu, and M. D. Goldberg |
| | P1.6 | GOES-R Downlink Services for Users John Schimm, Northrop Grumman, Redondo Beach, CA; and J. Castellon, L. Kincaid, and L. E. Urner |
| | P1.7 | The GOES ABI ground processing development system Jon Ormiston, ITT Space Systems Division, Fort Wayne, IN; and J. Blume, J. Ring, and J. Yoder |
| | P1.8 | Development of the GOES-R ABI Outgoing Longwave Radiation product Hai-Tien Lee, University of Maryland, College Park, MD; and I. Laszlo and A. Gruber |
| | P1.9 | Applying split window technique for land surface temperature measurement from GOES-R advanced baseline imager Yunyue Yu, NOAA/NESDIS, Camp Springs, MD; and D. Tarpley, M. K. Rama Varma Raja, H. Xu, and K. Y. Vinnikov |
| | P1.10 | Development and validation of a BRDF model for ice mapping for the future GOES-R Advanced Baseline Imager (ABI) using Artificial Neural Network Hosni Ghedira, NOAA-CREST, New York, NY; and M. Temimi, R. Nazari, P. Romanov, and R. Khanbilvardi |
| | P1.11 | GOES-R wind retrieval algorithm development Iliana Genkova, CIMSS/Univ. of Wisconsin, Madison, WI; and S. Wanzong, C. S. Velden, D. A. Santek, J. Li, E. R. Olson, and J. A. Otkin |
| | P1.12 | Validation of a GOES-R Broadband Shortwave Surface Transmission and TOA Albedo LUT method Fred G. Rose, SSAI, Hampton, VA; and Q. Fu, I. Laszlo, and T. P. Charlock |
| | P1.13 | Validation of the Community Radiative Transfer Model (CRTM) against AVHRR Clear-Sky Processor for Oceans (ACSPO) Nighttime Radiances for improved cloud detection and physical SST retrievals XingMing Liang, NOAA/NESDIS, Camp Springs, MD; and A. Ignatov, Y. Kihai, A. K. Heidinger, Y. Han, and Y. Chen |
| | P1.14 | Examining the MTSAT-1R solar channel calibration Hyoung-wook Chun, Seoul National University, Seoul, South Korea; and B. J. Sohn |
| | P1.15 | GOES-R ABI calibration approach David S. Smith, ITT Space Systems Division, Fort Wayne, IN |
| | P1.16 | The Global Space-based Inter-Calibration System (GSICS): A status report Xiangqian Wu, NOAA/NESDIS, Camp Springs, MD; and M. Goldberg |
| | P1.17 | Inter-calibration of geostationary imagers with MetOP/IASI hyperspectral measurements Likun Wang, QSS Group Inc, Camp Spring, MD; and C. Cao |
| | P1.18 | Generating synthetic infrared GOES-R ABI Images with AVHRR and GOES images William J. Emery, Univ of Colorado, Boulder, CO; and C. Roessler |
| | P1.19 | Synthetic GOES-R Imagery Development and Uses Lewis Grasso, CIRA/Colorado State Univ., Fort Collins, CO; and M. Sengupta and D. T. Lindsey |
| | P1.20 | Large-scale WRF model simulations used for GOES-R research activities Jason A. Otkin, CIMSS/Univ. of Wisconsin, Madison, WI; and A. Huang, T. Greenwald, E. R. Olson, and J. Seiglaff |
| | P1.21 | New instrumentation for characterizing the Moon as a standard for space-based radiometry Allan Smith, National Institute of Standards and Technology, Gaithersburg, MD; and S. Lorentz, H. Yoon, R. Datla, D. Pollock, T. C. Stone, and J. Tansock |
| | P1.22 | Preliminary study of lunar calibration for geostationary imagers Seiichiro Kigawa, Japan Meteorological Agency, Kiyose-shi, Tokyo, Japan; and K. Miyaoka |
| | P1.23 | Synthesis of Angular Distribution Models (ADMs) for use in Radiative Flux Estimates from the Advanced Baseline Imager (ABI) Xiaolei Niu, University of Maryland, College Park, MD; and R. Pinker |
| | P1.24 | Use of SEVIRI cloud properties to simulate radiative fluxes from GOES-R ABI R. T. Pinker, University of Maryland, College Park, MD; and R. Hollmann and H. Wang |
| | P1.25 | Effect of GOES-R image navigation and registration errors on atmospheric motion vectors Gary J. Jedlovec, NASA/MSFC/Short-Term Prediction Research and Transition (SPoRT) Center, Huntsville, AL |
| | P1.26 | GOES-13 End-to-End INR Performance Verification and Post Launch Testing Christopher A. Carson, Boeing Space & Intelligence Systems, Las Cruces, NM; and J. L. Carr and C. Sayal |
| | P1.27 | The ABI Image and Navigation Registration Ken Ellis, ITT Space Systems Division, Fort Wayne, IN; and K. Gounder, P. Griffith, D. Igli, A. Kamel, J. Ogle, and V. Virgilio |
| | P1.28 | The ABI star sensing and star selection Ken Ellis, ITT Space Systems Division, Fort Wayne, IN; and K. Gounder, P. Griffith, E. Hoffman, D. Igli, J. Ogle, and V. Virgilio |
| | P1.29 | ABI instrument performance simulation Ken Ellis, ITT Space Systems Division, Fort Wayne, IN; and R. D. Forkert, J. Witulski, and V. N. Virgilio |
| | P1.30 | GOES-R Proxy Data Management System Tong Zhu, NOAA/NESDIS, Camp Springs, MD; and M. J. Kim, F. Weng, M. Goldberg, A. Huang, M. Sengupta, D. K. Zhou, and B. Ruston |
| | P1.31 | Simulation of GOES-R ABI Radiances for OSSE Tong Zhu, NOAA/NESDIS, Camp Springs, MD; and F. Weng, M. Masutani, S. Lord, J. Woollen, Q. Liu, and S. A. Boukabara |
| | P1.32 | Multi-spectral precipitation estimation using Artificial Neural Networks Ali Behrangi, Center for Hydrometeorology and Remote Sensing (CHRS), Irvine, CA; and K. L. Hsu, S. Sorooshian, and R. Kuligowski |
| | P1.33 | Improving Nowcasting of convective storm development using MSG SEVIRI, MODIS, and GOES-12 imagery as risk reduction for GOES-R ABI Kristopher M. Bedka, CIMSS/Univ. of Wisconsin, Madison, WI; and W. F. Feltz, J. Sieglaff, and J. R. Mecikalski |
| | P1.34 | GOES Winter Precipitation efficiency algorithm Robert M. Rabin, NOAA/NSSL, Norman, OK; and J. Hanna |
| | P1.35 | Proxy ABI datasets relevant for fire detection that are derived from MODIS data Scott S. Lindstrom, CIMSS/Univ. of Wisconsin, Madison, WI; and C. C. Schmidt, E. M. Prins, J. Hoffman, J. Brunner, and T. J. Schmit |
| | P1.36 | Validating GOES active fire detection product using ASTER and ETM+ Wilfrid Schroeder, University of Maryland, College Park, MD; and I. Csiszar, E. M. Prins, C. C. Schmidt, and M. G. Ruminski |
| | P1.37 | GOES-R ABI fire detection and monitoring development activities Christopher C. Schmidt, CIMSS/Univ. of Wisconsin, Madison, WI; and S. Lindstrom, J. Hoffman, J. Brunner, and E. M. Prins |
| | P1.38 | Quantifying uncertainties in fire size and temperature measured by GOES-R ABI Manajit Sengupta, CIRA/Colorado State Univ., Fort Collins, CO; and L. Grasso, D. W. Hillger, R. Brummer, and M. DeMaria |
| | P1.39 | Quality Assessment of the GOES-R AWG Level 2 Product Processing System Lihang Zhou, Perot System, Fairfax, VA; and W. W. Wolf, S. Qu, P. Keehn, Q. Guo, S. Sampson, and M. D. Goldberg |
| | P1.40 | Trade-off studies on future GOES hyperspectral infrared sounding instrument Jinlong Li, CIMSS/Univ. of Wisconsin, Madison, WI; and J. Li, T. J. Schmit, and J. J. Gurka |
| | P1.41 | Sounder options in the GOES-R era David Crain, ITT Space Systems Division, Fort Wayne, IN |
| | P1.42 | Hyperspectral infrared alone cloudy sounding algorithm development Elisabeth Weisz, Univ. of Wisconsin/CIMSS, Madison, WI; and J. Li, C. Y. Liu, D. K. Zhou, H. L. Huang, and M. Goldberg |
| | P1.43 | Improved GOES water vapor products over CONUS – planning for GOES-R Daniel Birkenheuer, NOAA/ESRL, Boulder, CO; and S. I. Gutman, S. Sahm, and K. Holub |
| | P1.44 | Aerosol size density characterization for single scattering using Artificial Neural Network Andres Bonilla, Univ. of Puerto Rico, Mayaguez, PR; and H. Parsiani |
| | P1.45 | AER general 1D-Var retrieval infrastructure: transition from research to operations Richard J. Lynch, AER, Inc., Lexington, MA; and J. L. Moncet, A. Lipton, D. Hogan, R. d'Entremont, and H. Snell |
| | P1.46 | The GOES-R User Readiness Group, engaging and preparing the users for GOES-R data Kenneth H. Lowe, Noblis, Falls Church, VA; and M. Goldberg and J. Daniels |
| | P1.47 | Overview of GOES-R Analysis Facility for Instrument Impacts on Requirements (GRAFIIR) Planned Activities and Recent Progress Allen Huang, CIMSS/Univ. of Wisconsin, Madison, WI; and M. Goldberg |
| | P1.48 | GOES-R Algorithm Working Group: Space weather team update S. Hill, NOAA/NWS, Boulder, CO; and H. J. Singer, T. Onsager, R. Viereck, D. Biesecker, C. C. Balch, D. C. Wilkinson, M. Shouldis, P. Loto'aniu, J. Gannon, and L. Mayer |
| | P1.49 | Space weather products from the GOES-R magnetometer Paul T.M. Loto'aniu, NOAA/NWS, Boulder, CO; and H. J. Singer |
| | P1.50 | Improving space weather forecasts using solar coronagraph data Simon P. Plunkett, NRL, Washington, DC; and A. Vourlidas, D. R. McMullin, K. Battams, and R. C. Colaninno |
| | P1.51 | GOES-N EUVS observations during post-launch testing Douglas J. Strickland, Computational Physics, Inc., Springfield, VA; and J. S. Evans, W. K. Woo, D. R. McMullin, S. P. Plunkett, and R. Viereck |
| | P1.52 | GOES-N EUVS field of view sensitivities and modeling Donald R. McMullin, Praxis, Inc., Alexandria, VA; and D. J. Strickland, J. S. Evans, W. K. Woo, S. P. Plunkett, and R. Viereck |
| | P1.53 | Enhancing the Geostationary Lightning Mapper for improved performance David B. Johnson, NCAR, Boulder, CO |
| | P1.54 | A microwave sounder for geostationary orbit Bjorn H. Lambrigtsen, JPL and California Institute of Technology, Pasadena, CA |
| | P1.55 | Activities of GOES-R land applications working group team Dan Tarpley, NOAA/NESDIS, Camp Springs, MD; and Y. Yu, P. Romanov, E. Prins, K. Gallo, F. Kogan, H. Xu, M. K. RamaVarma Raja, K. Y. Vinnikov, M. Goldberg, S. Qiu, and J. L. Privette |
| | P1.56 | Seasonal, Diurnal, and Weather Related Variations of Clear Sky Land Surface Temperature: A Statistical Assessment Konstantin Y. Vinnikov, University of Maryland, College Park, MD; and Y. Yu, M. K. Rama Varma Raja, J. D. Tarpley, and M. D. Goldberg |
| | P1.57 | Enhanced Observation Capability of the New Generation Geostationary Satellites for Better Vegetation Monitoring Peter Romanov, University of Maryland and NOAA/NESDIS, Camp Springs, MD; and H. Xu and D. Tarpley |
| | P1.58 | Comparison of GOES cloud classification algorithms employing explicit and implicit physics Richard L. Bankert, NRL, Monterey, CA; and C. Mitrescu, S. D. Miller, and R. H. Wade |
| | P1.59 | Estimation of Sea and Lake Ice Characteristics with GOES-R ABI Xuanji Wang, CIMSS/Univ. of Wisconsin, Madison, WI; and J. R. Key, Y. Liu, and W. Straka |
| | P1.60 | On the use of geostationary satellites for remote sensing in the high latitudes Yinghui Liu, CIMSS/Univ. of Wisconsin, Madison, WI; and J. Key and X. Wang |
| | P1.61 | Operational GOES-SST and MSG-SEVIRI-SST products for GOES-R risk reduction Eileen Maria Maturi, NOAA/NESDIS, Camp Springs, MD; and A. Harris, J. Mittaz, and J. Sapper |
| | P1.62 | Overview of the NESDIS heritage AVHRR Sea Surface Temperature Calibration/Validation system Dilkushi De Alwis, NOAA/NESDIS and CIRA/Colorado State Univ., Camp Springs, MD; and A. Ignatov, J. Sapper, P. Dash, W. G. Pichel, Y. Kihai, and X. Li |
| | P1.63 | Validation of Real-Time GOES Products Using GLAS and CALIPSO Data Louis Nguyen, NASA/LaRC, Hampton, VA; and P. Minnis, D. A. Spangenberg, J. K. Ayers, R. Palikonda, M. L. Nordeen, and T. L. Chee |
| | P1.64 | The Manual Cloud Filtering of GOES-satellite data through combined use of satellite and ground measurements M. K. Rama Varma Raja, I. M. Systems Group, Inc. and NOAA/NESDIS/STAR, Camp Springs, MD; and Y. Yu, D. Tarpley, H. Xu, and K. Y. Vinnikov |
| | P1.65 | Status update from the GOES-R Hydrology Algorithm Team Robert J. Kuligowski, NOAA/NESDIS, Camp Springs, MD |
| | P1.66 | PAPER WITHDRAWN
|
| | P1.67 | Possible impacts of GOES-R temporal resolution on tropical cyclone intensity estimates John L. Beven II, NOAA/AOML/NHC/TPC, Miami, FL; and C. S. Velden and T. L. Olander |
| | P1.68 | Verifying large-scale, high-resolution simulations of clouds for GOES-R activities Thomas Greenwald, Univ. of Wisconsin, Madison, WI; and J. Sieglaff, Y. K. Lee, H. L. Huang, J. Otkin, E. Olson, and M. Gunshor |
| | P1.69 | Retrieving cloud properties for multilayered clouds using simulated GOES-R data Fu-Lung Chang, National Institute of Aerospace, Hampton, VA; and P. Minnis, B. Lin, R. Palikonda, M. Khaiyer, S. Sun-Mack, and P. Yang |
| | P1.70 | Nighttime retrieval of cloud microphysical properties for GOES-R Patrick W. Heck, CIMSS/Univ. of Wisconsin, Madison, WI; and P. Minnis, R. Palikonda, C. R. Yost, F. L. Chang, and A. K. Heidinger |
| | P1.71 | Nearcasting convective destabilization using objective tools which optimize the impact of sequences of GOES moisture products Ralph A. Petersen, CIMSS/University of Wisconsin, Madison, WI; and R. M. Aune |
| | P1.72 | Transitioning GOES-based nowcasting capability into the GOES-R era Brian L. Vant-Hull, NOAA/CREST CCNY, New York, NY; and M. Ba, R. Rabin, D. S. Mahani, R. J. Kuligowski, A. Gruber, and S. B. Smith |
| | P1.73 | Nowcasting of Thunderstorms from GOES Infrared and Visible Imagery Valliappa Lakshmanan, CIMMS/Univ. of Oklahoma, NOAA/NSSL, Norman, OK; and R. M. Rabin |
| | P1.74 | Mission Availability Improvements for GOES-R Larry E. Urner, Northrop Grumman, Redondo Beach, CA; and J. Castellon, M. Hanson, and S. Sawyer |
| | P1.75 | Determination of aircraft icing threat from satellite William L. Smith Jr., NASA/LaRC, Hampton, VA; and P. Minnis and D. A. Spangenberg |
| | P1.76 | Cloud statistics over agricultural and mixed forest areas Valentine Anantharaj, Mississippi State University, Mississippi State, MS; and U. S. Nair, D. Berendes, S. Asefi, and J. G. Fairman |
| | P1.77 | Comparison of atmospheric profiles from hyperspectral and multispectral IR radiances on depicting hurricane thermodynamic structures Hong Qiu, CIMSS/Univ. of Wisconsin, Madison, WI; and J. Li, E. Weisz, and C. Y. Liu |
| | P1.78 | Development of severe weather products for the GOES-R Advanced Baseline Imager Daniel T. Lindsey, NOAA/NESDIS, Fort Collins, CO; and D. W. Hillger and L. Grasso |
| | P1.79 | Algorithm and Software Development of Atmospheric Motion Vector Products for the GOES-R ABI Jaime M. Daniels, NOAA/NESDIS, Camp Springs, MD; and W. Bresky, C. Velden, I. Genkova, S. Wanzong, and D. Santek |
| | P1.80 | An enhanced IDEA product with GOES AOD Hai Zhang, JCET/Univ. of Maryland, Baltimore, MD; and R. M. Hoff, S. Kondragunta, I. Laszlo, and A. Wimmers |
| | P1.81 | An initial assessment of the GOES Microburst Windspeed Potential Index Kenneth L. Pryor, NOAA/NESDIS, Camp Springs, MD |
| | P1.82 | GOES-R Applications for the Assessment of Aviation Hazards Kenneth L. Pryor, NOAA/NESDIS, Camp Springs, MD; and W. Feltz, J. R. Mecikalski, M. Pavolonis, and W. L. Smith |
| | P1.83 | Application of Multi-Spectral Data to Space Shuttle Landing Operations Doris A. Hood, NWS Spaceflight Meteorology Group, Houston, TX; and T. Garner and T. Oram |
| | P1.84 | Weather Information and Decision Systems (WxIDS): Looking to the future of data processing and decision support systems Dylan Powell, Lockheed Martin, Greenbelt, MD; and J. A. Dutton, J. Ross, J. Sroga, C. F. Chang, R. Pickens, S. Pitter, K. Leesman, G. Young, P. G. Knight, N. L. Seaman, J. Nese, G. Haselfeld, R. Wessels, and M. Dhondt |
| | P1.85 | Development of simulated GOES products for the GFS and the NAM Hui-ya Chuang, NOAA/NWS/NCEP, Camp Springs, MD; and B. Ferrier |
| | P1.86 | Current GOES Sounder applications and future needs Jun Li, Univ. of Wisconsin, Madison, WI; and T. J. Schmit, J. J. Gurka, J. Daniels, M. D. Goldberg, and P. Menzel |
| | P1.87 | GOES-R ABI proxy data set generation at CIMSS Mathew M. Gunshor, CIMSS/Univ. of Wisconsin, Madison, WI; and E. Olson, J. Sieglaff, T. Greenwald, A. Huang, and J. A. Otkin |
| | P1.88 | GOES-R mesoscale product development Renate Brummer, CIRA/Colorado State Univ., Fort Collins, CO; and M. DeMaria, J. A. Knaff, B. H. Connell, J. F. Dostalek, and D. Zupanski |
| | P1.89 | GOES-R/ABI legacy profile algorithm evaluation with MSG/SEVIRI Xin Jin, CIMSS/Univ. of Wisconsin, Madison, WI; and J. Li, T. J. Schmit, J. Li, E. Weisz, and Z. Li |
| | P1.90 | High spatial and temporal resolution retrievals obtained from the combination of GOES-R multispectral ABI and joint polar satellite ultraspectral radiances William Smith Sr., Hampton Univ., Hampton, VA; and S. Kireev, D. Zhou, A. M. Larar, X. Liu, M. D. Goldberg, and E. M. Maturi |
| | P1.91 | Real-time display of simulated GOES-R experimental products Donald W. Hillger, NOAA/NEDSIS/StAR/RAMM Branch, Fort Collins, CO CO |
| | P1.92 | Recasting HYDRA into the next generation of McIDAS Thomas D. Rink, CIMSS/Univ. of Wisconsin, Madison, WI; and T. Whittaker, T. H. Achtor, B. Flynn, G. Dengel, and K. Baggett |
| | P1.93 | Looking Ahead to GOES-R Space Weather Data Archive, Access, and User Services Daniel C. Wilkinson, NOAA/NESDIS, Boulder, CO; and W. F. Denig |
| | P1.94 | Geostationary Operational Environmental Satellites (GOES) in support of NOAA's Climate Reference Network (CRN) Debra Braun, NOAA/NESDIS/NCDC, Asheville, NC |
| | P1.95 | Remapping GOES Imager Instrument Data for South American Operations, Implementing the XGOHI System Shahram Tehranian, Nortel Government Solutions, Lanham, MD; and J. L. Carr, S. Yang, H. Madani, S. Vasanth, K. Mckenzie, T. J. Schmit, A. Swaroop, and R. DiRosario |
| | P1.96 | GOES-10 @ 60 West – a Wisconsin perspective Timothy J. Schmit, NOAA/NESDIS/ORA, Madison, WI; and J. Li, J. P. Nelson, A. J. Schreiner, G. S. Wade, and Z. Li |
| | P1.97 | Deep convection defined by split window Toshiro Inoue, MRI, Tsukuba, Ibaraki, Japan |
| | P1.98 | GOES-R 2008 User Conference Poster Abstract for the NOAA CLASS Project Robert Rank, NOAA/NESDIS, Suitland, MD; and F. Vizbulis |